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Computer-Aided Design of Microstrip
Filters by Iterated Analysis

GARY T. ROAN anD KAWTHAR A. ZAKI, SENIOR MEMBER, IEEE

Abstract —An iterative method for the design of microstrip low-pass
elliptic function filters is described. The method, which is a direct exten-
sion of [1], determines the microstrip line parameters that produce the
same locations of the frequencies of transmission zeros and reflection
zeros of an equivalent lumped-element prototype. Effects of the discontinu-
ities at the junctions are easily accounted for in the iteration. A design
example is included, and an experimental seventh-order filter designed and
constructed using the procedure gives measured results which agree closely
with theory.

1. INTRODUCTION

HIS PAPER is an extension to the distributed element
case of a technique originally introduced in [1] for the
design of lumped-element low-pass filters.

Low-pass filters implemented on microstrip offer an
attractive alternative to other media for miniaturization,
low manufacturing costs, and its potential for integration
with other MIC or MMIC components. Techniques for
realization of such filters on thin, moderate-to-high relative
dielectric constant substrates (e.g., alumina), with cut-off
frequencies in the C band and higher, often lead to un-
satisfactory results (e.g., inclusion of redundant transmis-
sion line elements {2]-[4], impractical impedance levels,
long line lengths, etc.). Similar problems also rise when
semilumped element techniques for Chebyshev filter real-
izations are used [5].

In [6], a good method for the synthesis and realization of
microstrip low-pass filters was presented. This method
uses the complete equivalent circuit of a rectangular micro-
strip as the building block to synthesize the desired filter
response, and thereby avoids the use of redundant ele-
ments. To use this technique, it is essential first to perform
the synthesis of a lumped-element prototype filter (or find
the element values from tables) using the well-known
conventional insertion-loss theory [7].

In this paper an alternative approach is presented for
the design of microstrip low-pass filters of higher order.
The approach extends the principles developed in [1] (which
deals with the lumped-element case) to the distributed
parameter case. The essence of this method is to iteratively
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adjust a set of the filter’s element values until the zeros,
poles, and the scale factor of the characteristic function of
the microstrip filter match their desired values. The method
requires only simple analysis, avoids complications nor-
mally associated with network synthesis of high-degree
networks, and easily takes into account the effects of all
discontinuities and parasitics. The synthesis may not be
optimum, since the transmission and reflection zeros are
optimized for the lumped-element case. In practice, this
results in a nonequiripple passband with lower ripple near
the band edges.

In Section II the design procedure is described. The
process of solution of the poles and zeros of the filter’s
characteristic function is outlined. The method of analysis
uses the simple chain matrix multiplication of the cascaded
elements. This allows the effects of the discontinuities to
be included as “fixed” elements in the cascade. Since the
iterative process requires the calculation of partial deriva-
tives of the response with respect to the parameters of the
elements, an efficient method for doing this is presented.

Section III presents results of the application of the
method. Convergence and accuracy of the iteration process
is examined. Considerations for practical implementation
of filters and numerical results of typical designs illustrat-
ing these considerations are presented.

Section IV presents measured results on a seventh-order
experimental filter and compares the measurements with
theory. Conclusions and discussions are included in Sec-
tion V.

II. DESIGN PROCEDURE

The design procedure starts by finding the characteristic
function K(s) of a low-pass prototype which meets the
loss specifications with an equal-ripple passband. This can
be done by using one of several standard approximation
procedures [8]. The result of this step yields the filter order
n, the passband ripple a,, the transmission zeros Wy, and
the reflection zeros w, of a lumped-element prototype,
shown in Fig. 1. The characteristic function is given by
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Fig. 1. Symmetric low-pass filter prototype (a) and its passband re-
sponse (b) shown for the case n =7 (N = 3).
where
N
f(s). sknl(s +w0 ) (1b)
M
p(s)= I_I(s2+w ) (1c)
and
€=10"% —1 (1d)
M<N, 1>w0k, woo’>1.

The filter insertion loss ratio, defined as the ratio of the
maximum available source power to the output power in
the termination, is related to K(s) by
H(s)H(=s)=1+K(s)K(~s). (2)
In the following discussion it will be assumed that
the filter order n is odd (n=2N+1) and that it pos-
sesses the maximum number of finite transmission zeros
(i.e., M = N). Under these assumptions the circuit will be
symmetnc (i.e., the two port parameters Z,; = Z,,). From
a practical viewpoint this assumption does not represent
any significant restrictions. However, for n even, or for
M < N, the modifications to the design procedure are

straightforward. A microstrip circuit which approximates

the behavior of the lumped-element prototype is shown in
Fig. 2. This circuit consists of a cascade of short lengths of
high-impedance lines of a characteristic impedance Z,,
alternating with shunt open-circuit stubs. The lengths of
the shunt stubs are chosen such that they produce the loss
poles w,, (i.e., the poles of K(s)).

Equivalent circuits of the two types of discontinuities
encountered in the filter of Fig. 2 are shown in Fig. 3. For
the T junction of a stub with the high-impedance line [9]
(Fig. 3(a)), at terminal plane T;, the open-circuit stub’s
equivalent circuit, including the end’s fringing capacitance
C;, is shown in Fig. 3(b). The stub lengths d, are chosen

1483

to be
‘ v 1~ w2 LG
dk=——li- tan~! /'
w°°/< ookC Z + (wookLk/ZOk)
k=1,2,--- .M
kakZOk+ (wkak/ Zok)

v, | T W
-— [— - (3)

Weo, 2
where v, = propagation velocity on the stub, Z, = stub’s
characteristic impedance, and L, = the stub’s series dis-
continuity inductance of the T junction. The above choices
of the shunt stub lengths ensure that the characteristic
function K(s) of the network will have the correct poles
(i.e., poles of K(s)). The next step in the design procedure
is to iteratively change the line lengths /,, i=1,3,5,---,n
and stub characteristic impedances zy, k=12,---,M
such as to force the characteristic function K(s) to have
the same zeros as K(s) and the multiplying constant e. A
systematic way to accomplish this is desctribed below [1].

The chain matrix of the filter, which is a lossless recipro-
cal 2-port, at any given frequency w can be written as

UHJAC sz][_VI] (4)

where A, B, C, and D are all real functions of w. The
input reflection coefficient p of the filter terminated in the
normalized unit load is easily shown to be given by

(A-D)+ j(B-C)
(A+D)+ j(B+C)’

1- o)fokL e

(5)

p =

The insertion voltage ratio H(j«) and the characteristic
function K(jw) are given respectively by [1]
2H(jw)=(A+ D)+ j(B+C)

2K(jw)=(A—D)+ j(B-C).

(6)
(7)

It the chain matrix of the filter is evaluated at the zeros of
K(s), all of which are simple and lie on the jw axis, then
at each of these zeros (7) gives two real equations:

A-D=0 and B-C=0. (8)

Equation (8), when applied at each of the given N
reflection zeros of the filter, result in 2N nonlinear equa-
tions in the n(=2N +1) unknown element values. These
unknowns (see Fig. 2) are the line lengths 7, /5,---, 1, and
the shunt stub normalized characteristic impedances
Zy, Zy, 5 Zy,- An additional equation is obtained by
matchmg the behavior of K (s) and K(s) around s =0 in
an analogous way to the lumped-element case [1]). The
result of this process (ignoring contributions from discon-
tinuities) gives

n Z,—1/Z N M 1 d
2kZml=M—2121+1_ k
1=1

=1 U

——— 9

k=1 Zo, Uk
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Fig. 2. Microstrip realization of the filter of Fig. 1.
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Fig. 3. (a) Equivalent circuit of the T-junction discontinuity. (b) Equiv-
alent circuit of the open stub at terminal plane Tj, including fringing
capacitance C,. (c) Equivalent circuit at junction between input and
output lines and the first filter section.

where

(10a)

k*=10%/19 -1 (10b)

and where «, is the passband ripple of the low-pass
prototype. (Note that all impedances Z,, Z, are normal-

ized to the input and output line impedances Z,.) Proof of
(9) follows the same steps as the lumped case in [1].

Solution of the n equations (8) and (9) is most conveni-
ently accomplished iteratively using Newton’s method, for
which the derivatives of the equations with respect to the
variables are needed. Derivatives of the chain matrix are
efficiently computed as indicated below [1], [10].

The overall chain matrix 7 of the filter is the product of
the chain matrices of the individual cascaded sections [10]

(11)

where T, is the chain matrix of the ith section, i=
1,2,---,n, x is the vector of variable network parameters
(i.e., line lengths /;, [5,- - -, [, and characteristic impedances
Zy, 2y, Zy ). If x, belongs to section j, then the

v 2 0 . L
partial derivative of T(x) with respect to x, is given
by [10]

T(x)=TT, T _,IT ., T

71yt +1 n

aT(x)
ax

H

T,
—TlTZ"'Y}fl—a_xl’I;+1'“Tn' (12)
Explicit expressions for the individual chain matrices 7,
and their derivatives 97, /dx,, including the discontinuity
effects, are summarized in Fig. 4.

Let the values of the left-hand sides of (8) and (9). as
computed from the approximate network, be assembled in
any order into a vector g, and let the values of the
right-hand side of these equations be assembled, in
the same order, into a vector §. Let the vector x of
the element values have the components defined in
Fig. 4 (x5 1=y 1, k=1 M+1, x,=2,, k=
1,2,---, M), and let the partial derivatives of the left-hand
side of (8) and (9) with respect to x, form the Jacobian
matrix J. The Newton method then gives the correction
Ax to an approximate vector x as the solution of the n
linear equations {1]:

JAx=g—g.

(13)

J and g are formed simultaneously, two rows at a time,

from the two analyses at each frequency of zero loss as
obtained from Fig. 4. Entries for J corresponding to (9)
are simply obtained as (Z, —1/Z, )/v, for x,,.1 =154
or dy /vy for x,, = Z,,.
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For k = 1,2, .M

Zo 6 = U
ZTop = E = o
2k 0k 3 Uk

1 wly Zo, [WCIZO.( tan éx —

B T Ze T 7o | WCrZoy + tanon

1 0] Ta _ { 0 0}
’ Y

} 18

4B,

T []B,, 1 P 2 o

8By 2.2 wly 1 ) wCyiZo, tan by (ka i )]
—— = BiZ 1+ + VI Aol -

EE k<0 Zo, Z0,Bi.) wCinZo, — tanby Zo, Zo, B

(b)

L’M

OTW—O_—:_BW

2l T Za(= 1)
o— L > S ¢ ) —
!
‘C— [ —-
In b om oo 2M -1 0, &p
lh
; N cosf, -—" sinf,
T Ta| g, iz Th
J Zosin 0, €08y
1 0 1 12398 1 J~_LL 1 il Ly ]
Ty = Iz = Z, I
4 [gzowcr‘, 1J [o : ] + T8 {o 1 || 1Z0uC, [ i
—sinf,

f& wTA[ ]27":‘5030,,:]7,5

Azp v  —smné,

Zu
35> cos 8,

@

Fig. 4. (a) Equivalent circuit, chain matrix, and its derivative of input section, including discontinuities. (b) Equxvalent
circuit, chain matrix, and its derivative for shunt stub, including discontinuities. (c) Equivalent circuit, chain matrix, and its
denvat1ve for a typical high-impedance line section, 1nc1ud1ng discontinuities. (d) Equivalent circuit, chain matrix, and its

derivative for the output section, including discontinuities.

III. NUMERICAL RESULTS

A computer program was implemented to carry out the
design procedure described in the previous section. The
line lengths l54+1, and stub characteristic impedances Z,,
k=1,2,---, M are initially chosen to be A /16 and ZO,
respectively. The value Z, of the high-impedance lines
is chosen to provide the highest possible value for a
reasonable line width on the substrate material
(2Zy< Z,,<25Z,). Then the discontinuities of the equiv-
alent circuits of Fig. 3 are determined from these line
dimensions according to the formulas given in [9]. The
stub lengths d,, k =1,2,---, M are then determined from
(3). Then the iterative procedure is started. In each step of
the iteration, after the new shunt stub impedances are
obtained, the corresponding line widths are determined
and the new corresponding discontinuity reactances com-

puted, which are then used in the next step of the iteration.
This procedure has been tried for several cases and was
found to always converge in a number of iterations which
is dependent on the filter’s order n. For n < 7 only about
ten iterations are needed, while for n >12 typically 20 to
25 iterations are required.

An example of a seven-section low-pass filter is pre-
sented below. The filter has a cutoff frequency of 4 GHz, a
minimum stopband attenuation of 40 dB, and a passband
ripple of 0.1733 dB (i.e., maximum passband VSWR =1.5).
Table I gives the locations of the normalized passband
zero reflection points and stopband attenuation poles. The
final normalized adjusted values of the line lengths and
shunt stub impedances for this filter are given in Table 11.

The calculated responses, of the lumped-element proto-
type filter and the distributed parameter filter are shown in
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TABLE 1
NORMALIZED REFLECTION ZEROS AND TRANSMISSION ZEROS
OF A SEVEN-ELEMENT FILTER

Number of elements 7
Pass band nipple (dB) 1773
Minimum stop band attenuation (dB) | 40
I Normalized reflection zeros wy, 0.5355906
«0, 0.8586568
oy 0 9860456
Normalized transmission zeros wso, 1.230000
ooy 1 500000
vy | 1.880000
TABLE 11

NORMALIZED CHARACTERISTIC IMPEDANCES, LINE, AND STUB LENGTHS
OF A SEVEN-ELEMENT FILTER

Element Normalized Line length
Impedance (wvave lengths)
€ 2.0000 0.095777
d; 1.1171 0.14143
I 2.0000 0.15047
ds 2.0345 0.20779
€5 2.0000 0.13935
d; 1.5109 0.17229
l7 2.0000 0.081761

Fig. 5. The passband insertion loss response (Fig. 5(a)) of
the distributed parameter filter does not exhibit the equal
ripple behavior, but shows a decreasing ripple level closer
to the band edge. The stopband of Fig. 5(b) shows the
spurious response of the distributed parameter filter start-
ing at approximately twice its cutoff frequency.

IV. EXPERIMENTAL RESULTS

To verify the design procedure, a seven-clement low-pass
elliptic function filter with a 0.17 dB passband ripple,
40 dB minimum cutoff band attenuation, and 4 GHz
cutoff frequency was designed, constructed. and tested.
The filter was realized on an alumina substrate 0.025
inches thick. The enlarged conductor pattern of this filter
is shown in Fig. 6. This filter is constructed according to
an earlier version of the design procedure described in
Section II. In that earlier version the transmission zeros
were realized as shunt connected semilumped stubs as
described in Section II. Each semilumped L — C circuit is
realized as shown in Fig. 6 by a short length of high-
impedance line (approximating L) in cascade with a short
length of low-impedance line (approximating C). It was
later recognized that single shunt stubs are simpler to use
in terms of the design procedure and practical realization.
The filter responses using either method were almost iden-
tical. The measured and computed insertion and return
loss variations with frequency of the filter (modeled pre-
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Fig. 6. Microstrip distributed filter.

cisely using the conductor pattern of Fig. 6) are shown in
Fig. 7. The wide-band measured and computed insertion
loss responses are shown in Fig. 8, showing the spurious
responses up to 12 GHz. Agreement between the measure-
ments and calculations are quite good, in both the pass-
band, the stopband, as well as the far-out spurious re-
sponses. The transmission zeros of the insertion loss are
quite close to their predicted values, and the minimum out
of band response of 38 dB is also in close agreement with
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Fig. 8. Measured and computed wideband insertion loss response of the
filter showing its far-out spurious responses.

the 40 dB design value. The return loss is also quite close
to the theory. This filter fits on a substrate which measures
1.0X1.0 inches and its width could be reduced to 0.5
inches, as seen from Fig. 6.

V. CONCLUSIONS

The design process described in this paper proves to be

an extremely well-conditioned approach which gives accu- |
rate results even for filters of high order. The procedure

combines simplicity and efficiency and easily accounts. for
the effects of all the discontinuities in the circuit. Mea-
sured results obtained from the experimental filter con-
structed to verify the procedure showed good agreement
with theory. The filter is compact and can be easily in-
tegrated with MIC subsystems.
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